Context-Sensitive Lexicon Features for Neural Sentiment Analysis
نویسندگان
چکیده
Sentiment lexicons have been leveraged as a useful source of features for sentiment analysis models, leading to the state-of-the-art accuracies. On the other hand, most existing methods use sentiment lexicons without considering context, typically taking the count, sum of strength, or maximum sentiment scores over the whole input. We propose a context-sensitive lexicon-based method based on a simple weighted-sum model, using a recurrent neural network to learn the sentiments strength, intensification and negation of lexicon sentiments in composing the sentiment value of sentences. Results show that our model can not only learn such operation details, but also give significant improvements over state-of-the-art recurrent neural network baselines without lexical features, achieving the best results on a Twitter benchmark.
منابع مشابه
A Supervised Method for Constructing Sentiment Lexicon in Persian Language
Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...
متن کاملSentence Modeling with Deep Neural Architecture using Lexicon and Character Attention Mechanism for Sentiment Classification
Tweet-level sentiment classification in Twitter social networking has many challenges: exploiting syntax, semantic, sentiment and context in tweets. To address these problems, we propose a novel approach to sentiment analysis that uses lexicon features for building lexicon embeddings (LexW2Vs) and generates character attention vectors (CharAVs) by using a Deep Convolutional Neural Network (Deep...
متن کاملA Context-Dependent Sentiment Analysis of Online Product Reviews based on Dependency Relationships
Consumers often view online consumer product review as a main channel for obtaining product quality information. Existing studies on product review sentiment analysis usually focus on identifying sentiments of individual reviews as a whole, which may not be effective and helpful for consumers when purchase decisions depend on specific features of products. This study proposes a new feature-leve...
متن کاملیک چارچوب نیمهنظارتی مبتنی بر لغتنامه وفقی خودساخت جهت تحلیل نظرات فارسی
With the appearance of Web 2.0 and 3.0, users’ contribution to WWW has created a huge amount of valuable expressed opinions. Considering the difficulty or impossibility of manually analyzing such big data, sentiment analysis, as a branch of natural language processing, has been highly considered. Despite the other (popular) languages, a limited number of research studies have been conducted in ...
متن کاملLexicon Integrated CNN Models with Attention for Sentiment Analysis
With the advent of word embeddings, lexicons are no longer fully utilized for sentiment analysis although they still provide important features in the traditional setting. This paper introduces a novel approach to sentiment analysis that integrates lexicon embeddings and an attention mechanism into Convolutional Neural Networks. Our approach performs separate convolutions for word and lexicon e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016